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Abstract

This second part of the study presents some experimental applications to mechanical systems in which the results of

excitation estimation, obtained using traditional least squares and M-estimate, are compared.

The first case presented is a single input–multiple outputs system: a simple test-rig for the study of the vibrations of a

two-degrees of freedom system is employed to identify the constraint displacement that causes the measured mass

vibrations in presence of heavy noise.

The second case is a multiple inputs–multiple outputs system: a rotor test-rig is used to identify the positions, the

amplitudes and the phases of two unbalances using the vibrations measured in the bearings. In this case, also an additional

theoretical part is introduced about the basics of model-based identification in the frequency domain applied to rotor

dynamics.

The last case is again a single input–multiple outputs system, but in an industrial application: experimental vibrations of

a 320MW steam turbo-generator are used to identify position and amount of a known balancing mass in an on-field real

case.

Moreover, whilst in the numerical examples presented in the first part the knowledge of the system was perfect, in these

cases some uncertainties are present also in the system model.

Finally, the paper introduces the use of the M-estimate technique to evaluate the adequacy the model of the system, by

means of the analysis of the weights attributed to the measures as a function of the frequency of the excitation.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of M-estimators, applied to the robust identification of mechanical systems, has been introduced
in the first part of the study [1]. Since several types of M-estimators actually exist, their advantages and
drawbacks have been highlighted by means of numerical examples and the types more suitable for mechanical
systems have been proposed.

In this second part, some experimental results are presented in order to further validate the proposed
method. Contrarily to what has been done in the numerical cases, in which the knowledge of the system model,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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or of its parameters, was always perfect and noise was present only (deliberately) on the outputs, in these
experimental cases the uncertainties are not only in the outputs but also in the system model.

In particular, the noise on the outputs is that typical of actual measuring systems and is neither known a

priori nor its evaluation is performed. In a case, nothing is even done to avoid the presence of easily eliminable
noise. As it regards the model, it is deliberately approximate in the first case, in which the dynamic response of
the supporting structure is totally and deliberately neglected. In the other cases related to rotor dynamics,
there are some ranges of frequency in which the model is not reliable due to the stiffness and damping
coefficients of the journal bearings that are linearized and calculated for some rotating speeds only.

The first example presented here is a simple single input–multiple outputs (SIMO) system: a test-rig for the
study of the vibrations of a two-degrees of freedom (dofs) system. Two masses are linked to a horizontal guide
by means of rollers and connected by springs. The displacement of a constraint excites the vibration of the
system. In this case, the supporting structure has a natural frequency very close to one of the natural
frequencies of the system. This fact is intentionally neglected in the model, in which the supporting structure is
considered rigid. Besides the measurement chain is not shielded and filters are not used.

In the second example, the M-estimators are used to evaluate the value and the position of two unbalances
in a rotor-dynamics test-rig, starting from the vibrations measured in the bearings. The increase of accuracy is
shown in comparison to results obtained using the traditional least squares. This system is of multiple
inputs–multiple outputs (MIMO) type. In this case, since it is also necessary to evaluate the position of the
excitations along the shaft line, it is necessary to implement the algorithm of the iterated reweighed least
squares (IRLS) in the model-based identification method proposed in Ref. [2]. Therefore, the necessary theory
is shortly introduced. Given that it is necessary to insert the stiffness and the damping coefficients of the
journal bearings in the rotor model, these last ones are linearized according to the standard methods of the
rotor dynamics [3–5]. Anyway the coefficient calculations could not be accurate in some rotating speed ranges.
In particular, it is shown that the knowledge of the weights attributed by the IRLS algorithm to the various
measures can also be used to assess the adequacy of the model.

The last example is related to the robust identification of a balancing mass in a 320MW steam turbo-
generator. In this case the system is again of SIMO type and it is necessary to also estimate the position of the
unbalance along the shaft train, similar to the previous MIMO system. Being an on-field application, a
remarkable noise is present in the measurement chain and there are several uncertainties in the model, not only
in the bearing coefficients but also in the dynamical behaviour of the machine supporting structure. The results
obtained using the M-estimate are compared with those of least squares.
2. Experimental results for a SIMO system: 2 dofs mass–spring–damper system

In order to have a more meaningful evaluation of the performances of the M-estimators in mechanical
systems, a simple experimental set-up has been used to perform identification of the excitation in a real
environment, in which intentionally no care has been taken to avoid corruption of the measures. Moreover,
the knowledge of the system is not perfect.

The experimental set-up is shown in Fig. 1. The system is excited by the displacement of the constraint on
the left side, which is driven by means of a ball screw and an asynchronous motor actuated by an inverter.
Two masses, one connected to the other and to the constraints with linear springs, move on linear motion
guides over rollers.

The motor can drive the constraint in order to have a harmonic displacement with constant amplitude at a
given frequency. The damping of the system is modelled by means of lumped linear dampers in parallel to the
springs. The scheme of the system is shown in Fig. 2.

The equations of motion of the system are

m1 0

0 m2

" #
€x1

€x2

( )
þ

c1 þ c2 �c2

�c2 c2 þ c3
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_x2

( )
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�k2 k2 þ k3

" #
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x2

( )
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k1y0 þ c1 _y0

0

� �
. (1)

The friction between the rollers and the guide is taken into account by means of the equivalent damping
coefficients in Eq. (1). As can be noticed from Fig. 1, the vibrating system is not installed on a rigid support,
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Fig. 2. Model of the system.

Fig. 1. Experimental test-rig.
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which is instead implicitly assumed in Fig. 2 and Eq. (1), but on a table, the stiffness and damping of which are
unknown. These aspects are actually model uncertainties.

The masses and the left constraint are equipped by an accelerometer each. The displacements of the masses
correspond to the considered dofs of the system, while that of the constraint is acquired in order to check the
correspondence of the amplitude to the displacement imposed value by the inverter. A further confirmation
about the constraint displacement is given by a linear variable differential transformer (LVDT).

Complex algebra is used later on. Since the constraint displacement is harmonic: y0 ¼ Y 0e
ijeiOt, also the

steady-state displacements of the masses are harmonic. The steady-state solution is obtained solving

ð�O2Mþ iOCþ KÞX ¼
iOc1 þ k1

0

� �
Y 0e

ij (2)

and finally:

X ¼ ð�O2Mþ iOCþ KÞ�1
iOc1 þ k1

0

� �
Y 0e

ij. (3)

The least squares (L2) and the M-estimators described in the first part of the paper have been used to
estimate the amplitude and the phase of the left constraint displacement, which has been applied with a
nominal value of Y0 ¼ 1.8mm and j ¼ 01.

The model parameters have been identified before executing the tests. Static tests allowed to measure the
mass values (m1 ¼ m2 ¼ m ¼ 23.5 kg) and the spring stiffness (k1 ¼ k2 ¼ k3 ¼ k ¼ 5740N/m). The equivalent
damping coefficients have been evaluated by means of experimental modal analysis and are c1 ¼ c3 ¼

34.31Ns/m, c2 ¼ 3.98Ns/m.
The experimental tests have been performed by forcing the system in the frequency range between 1 and

5Hz with a step of 0.25Hz. The LVDT and the accelerometer on the constraint indicated that the
displacement was actually 1.8mm in average in this frequency range. Once the system reached the steady-state
response, the mass accelerations were measured with a sampling rate of 100 sample/s for 20 s of acquisition
time. The acquired time histories are affected by heavy disturbances, either electrical or mechanical, which also
corrupt the related spectra, since filters are not intentionally used. As an example, the time history of
the measured acceleration of the second mass relative to the constraint displacement at 2.25Hz is presented in
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Fig. 3. Time history of the acceleration of mass m2 with excitation frequency of 2.25Hz.
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Fig. 4. Spectrum of the acceleration of mass m2 with excitation frequency of 2.25Hz.
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Fig. 3 along with its amplitude spectrum in Fig. 4. The sinusoidal single frequency component is identified
taking the highest peak of the signal spectrum and the corresponding phase.

The experimental frequency response functions have been evaluated automatically considering, for each
excitation frequency, the highest peak in the measured spectra. It is important to stress again that this rough
method has been chosen in order to test M-estimator performances and to reproduce the worst real-world
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condition where not only the amplitude and the phase of the input force but often also its frequency are
unknown. If this last piece of information was known, a clever data analysis could be conducted for
instance not only using the highest peak but also limiting the peak search in a frequency range close to that
of the input.

Fig. 5 shows the comparison between the nominal (solid and dotted lines), given by the model, and the
experimental responses of the test-rig (markers only). The difference in the response close to the first resonance
of the system (model eigenvalues are equal to 2.4849 and 4.3062Hz) is particularly evident and is caused by the
fact that in this case the supporting structure vibrates strongly. Also close to the second resonance of the
system a certain difference is evident, while the responses are sufficiently comparable in the remaining
frequency range.

The results obtained by the L2 and the different types of M-estimators are reported in Table 1. The
maximum number of iterations of the IRLS algorithm is fixed at 100 and the stop condition is that in the first
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Fig. 5. Comparison between the model and the experimental responses of the test-rig.

Table 1

Identification results

Estimator Y0 (mm) j (deg.) Iterations

L2 (least squares) 1.542 4.4231

L1 (least absolute) 1.8253 0.20088 10

L1�L2 1.7686 1.9376 20

Lp, n ¼ 1.2 (least powers) 1.8127 0.65892 7

Fair 1.7567 1.9498 100

Huber 1.8093 1.6642 17

Modified Huber 1.784 1.6436 100

Cauchy 1.6706 2.6877 100

German-McClure 1.8266 0.51545 100

Welsch 1.5833 3.3767 100

Tukey 1.604 3.3146 100
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part of the study, i.e.:
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Fig. 6. Estimated values vs. iteration for the L1-estimate.
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Fig. 7. Estimated values vs. iteration for the L1�L2-estimate.
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Fig. 8. Estimated values vs. iteration for the Lp-estimate.
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Fig. 9. Estimated values vs. iteration for the Fair estimate.
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Figs. 6–15 present the evolution of the excitation estimate as a function of the number of iteration for all the
M-estimators adopted. The results obtained indicate that the L2-estimate is heavily influenced by the
disturbances on the measures and by the model inaccuracies: the exciting displacement is not identified
correctly. Among the different types of M-estimators, those that do not have a unique solution [6], i.e. Cauchy,
German-McClure, Welsch and Tukey, behave badly and the algorithm stops without having reached
convergence. Apparently German-McClure gives a good estimate, but this is due to the fact that this value
corresponds to the 100th iteration, average value of the estimate is less good (Fig. 13). Also Modified Huber
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Fig. 10. Estimated values vs. iteration for Huber’s estimate.
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Fig. 11. Estimated values vs. iteration for Modified Huber’s estimate.
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does not converge even if the estimate is better than the others not converging. L1 and Lp converge very
quickly (Figs. 6 and 8), with a good estimation on excitation module and phase. Huber gives a good estimation
and has the advantage of avoiding the numerical instability that could affect L1 (see Ref. [1], Section 3.1.1) or
the n value selection of Lp. In this case, M-estimators having a unique solution are able to give a good
estimation of the unknown parameter, even in the presence of disturbances in the experimental response and
of inaccuracies in the model.
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Fig. 12. Estimated values vs. iteration for Cauchy’s estimate.
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Fig. 13. Estimated values vs. iteration for German-McClure’s estimate.
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In the following, only Huber’s estimator will be used, giving a good compromise between accuracy, relative
immunity from numerical instability (see Ref. [1], Section 3.2), independence from arbitrary selections of least
power n value and quickness of convergence.

Once again the analysis of the weights attributed to the single samples allows understanding the way of
operating of the M-estimate inside the IRLS algorithm. Fig. 16 shows that the weights automatically
attributed in the last iteration to the experimental observations that are more influenced by disturbances are
very small.
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Fig. 14. Estimated values vs. iteration for Welsch’s estimate.
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Fig. 15. Estimated values vs. iteration for Tukey’s estimate.
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3. Experimental results for a MIMO system: identification of two unbalances in a rotor test-rig

3.1. Implementation of M-estimate in rotor systems

In this example, the proposed technique is used to improve the accuracy of fault identification in a rotor
test-rig. Practically, the model-based method presented in Ref. [2] is here improved by using the M-estimate
instead of the traditional least squares. Since in this case it is also of fundamental importance to locate the
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excitation (the unbalances) along the rotor shaft, a short introduction to the model-based identification in the
rotor system is required.

Model-based identification of faults in rotor systems [7] is essentially a MIMO inverse problem. Some
examples have been presented in the time domain [8], but since many types of faults of rotating machinery
effect few harmonic components (as well known in the literature starting from Sohre’s chart), the harmonic
balance approach is preferable. The method is fully described in Ref. [9] and requires the assembling of
the complete model of the machine composed by the rotor, the bearings and the supporting structure. The
rotor is modelled by means of finite beam elements with 4 dofs per node, whilst the bearing by means of
linearized dynamic stiffness coefficients, see, respectively, Refs. [10,11] and [3] for details. The supporting
structure can be considered rigid or, more accurately, modelled by means of pedestals or modal representation
(see Refs. [9,12–16]). Also common faults in rotor dynamics can be modelled by means of equivalent excitation

systems [9,17]; therefore these terms are considered as synonymous. With regard to the experimental data,
additional vibrations are used. They are obtained by means of the vector difference of the vibrations in the
faulty condition and in a reference condition. Under the hypothesis of linearity of the system, which is satisfied
in many cases of common faults in rotating machinery, the additional vibrations are caused by the developing
faults only. Further discussion about this topic can be found in Refs. [18,19].

Once the machine has been modelled, the following equations are obtained for each harmonic component,
in which the equivalent excitation vector Ff n

has to be identified:

½�ðnOÞ2½M� þ inO½CðOÞ� þ ½K��Xn ¼ Ff n
, (5)

where [M] is the mass matrix, [C(O)] is the complete damping matrix that includes also the gyroscopic matrix
calculated at the operating speed, and [K] is the stiffness matrix.

Because the system is considered as linear, the effect of m faults developing simultaneously can be
considered by means of the superposition of the effects for each harmonic component:

Ff n
¼
Xm

i¼1

F
ðiÞ
f n
. (6)

These excitations are the multiple inputs (MI) of the system. Moreover, the kth fault acts on few dofs of the
system; therefore the vector F

ðkÞ
f n

is not a full-element vector, which is convenient to be represented by means of

F
ðkÞ
f n
¼ fLðkÞgyðkÞðOÞ; yðkÞðOÞ 2 C, (7)
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where {L(k)} is the localization vector that has all null-elements, except for the dofs to which the exciting
system is applied, and y(k)(O) is a complex number representing the amplitude and the phase of the fault.
Obviously, as many nodes are used for the model, as much the location of the fault is accurate.

In the paper, in which unbalances are going to be identified, it is sufficient to consider the synchronous
(1� rev.) component of the vibration, but the method can be easily modified for other fault types, by using
the corresponding fault model and the pertinent harmonics. Since the unbalance can be only applied on the
rotor nodes and not on the foundation, the kth unbalance can be expressed as

F
ðkÞ
f 1
¼ 0 ..

. 1 0 i 0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
jth rotor node

..

.
0 0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

foundation dofs

8><
>:

9>=
>;

T

ðmrÞðkÞO2eij
ðkÞ

¼ O2fLðkÞgyðkÞ. (8)

In Eq. (8) the only elements different from zero are those relative to the horizontal and vertical dofs of the
node jth, where the unbalance is supposed to be applied (Fig. 17). Note that the application node is not known
a priori.

In general, the monitoring data used to identify the fault are collected for many rotating speeds and on
different measuring sections, usually referred to as measuring planes (which often are corresponding or close to
the bearings). The rotating speeds, at which the additional vibrations are available, are organized as a vector
of np elements:

X ¼ O1 O2 . . . Onp

n oT

. (9)

If the measuring planes are l, the experimental vibrations are measured along two orthogonal directions per
each plane and the vector of the additional vibrations is organized as follows:

N ¼ xð1ÞV ðO1Þ xð1ÞH ðO1Þ � � � xðlÞV ðO1Þ xðlÞH ðO1Þ � � � xð1ÞV ðOnp
Þ xð1ÞH ðOnp

Þ � � � xðlÞV ðOnp
Þ ðxðlÞHOnp

Þ
n oT

,

(10)

where e.g. xð1ÞV ðO1Þ indicates the vertical vibration in the first measuring plane, evaluated at the rotating
speed O1.

These are the measured multiple outputs (MO) of the considered system. Then, introducing the admittance
matrix of the system and dropping the subscript index n of the harmonic component order for simplicity,
Eq. (5) becomes:

½ZðXÞ�XðXÞ ¼

ZðO1Þ 0 0 0

0 ZðO2Þ 0 0

..

. ..
. ..

. ..
.

0 0 0 ZðOnp
Þ

2
666664

3
777775

XðO1Þ

XðO2Þ

..

.

XðOnp
Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

Pm
i¼1

F
ðiÞ
f ðO1Þ

Pm
i¼1

F
ðiÞ
f ðO2Þ

..

.

Pm
i¼1

F
ðiÞ
f ðOnp

Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
¼ Ff ðXÞ. (11)
Fig. 17. General rotor model, location of the measuring planes and of a fault in a general node j.
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If the rotor model has nr nodes and the support structure is represented by means of a foundation with km

dofs, the dofs of the fully assembled model are (4nr+km), while only 2l dofs are measured per each rotating
speed. The admittance matrix [Z(X)] has order ðð4nr þ kmÞnp � ð4nr þ kmÞnpÞ.

The equivalent excitation system, for each one of the m faults considered, is repeated for all the rotating
speeds so that the fault vector is of order ðð4nr þ kmÞnpÞ �m; taking into account that in this case the
unbalance is considered, in order to eliminate the dependence on the rotating speed square that appears in
Eq. (8), it is convenient to insert O2

j in the localization vector of each rotating speed. Therefore, in the first
node, the localization vector of the kth fault for the jth rotating speed is

LðkÞ;ðjÞ
� �

¼ O2
j 1 0 i 0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

1st node

0 0 0 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
2nd node

..

.
0 0 0 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

nrth node

0 . . . 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
km dofs

8><
>:

9>=
>;

T

(12)

and for all the np rotating speeds:

LðkÞ ¼ LðkÞ;ð1Þ
� �

� � � LðkÞ;ðnpÞ
� �n oT

. (13)

Since the faults have to be identified not only in their severity but also in their position, the identification
procedure starts by assuming their positions as known and then identifies the corresponding amplitudes and
phases. All the subsequent permutations of fault number and position have to be evaluated, unless the
research of the faults is limited inside a specified interval of nodes. The permutations nr

Pm are indicated by the
subscript so that (1, 5, y) means that the first excitation is applied in node 1, the second in node 5, etc.

These iterations are implemented in a loop. In the first step of the loop, all the equivalent excitations are
supposed to be in the first node.

The effect on the measured dofs, due to all the exciting systems applied to the first node on the model and
assumed to have unitary value (yðkÞ ¼ 1; 8k) is the vector ½Yð1;...;1Þ� of order (2lnp�m). Following the statistical
nomenclature, ½Yð1;...;1Þ� is the model matrix [20]. The kth column of the vector corresponds to the effect of the
kth generalized force. The calculation of ½Yð1;...;1Þ� is done first by substituting Eq. (13) in the right-hand side of
Eq. (11), and inverting matrix [Z(X)], obtaining the matrix [H(X)]

X ¼ ½ZðXÞ��1LðXÞ ¼ ½HðXÞ�LðXÞ. (14)

Then, the vibrations of the dofs that are measured are separated from all the dofs of the system, by
considering only the rows of [H(X)] corresponding to the measured dofs. The partitioned matrix ½H

�
ðXÞ� is of

order ð2lnp � ð4nr þ kmÞnpÞ and results:

½Yð1;...;1Þ� ¼ ½H
�
ðXÞ� Lð1Þ ..

.
LðmÞ

h i
. (15)

Now the array h, which is of order (m� 1), of the complex values y(i) (i.e. the modules and phases) of the
equivalent excitation systems applied to the first node that fits best the experimental data N, which is of the
order (2lnp� 1), has to be estimated. Under a statistical point of view, a linear regression model is used, where
h is the parameter vector to be estimated and r the residual vector:

N ¼ ½Yð1;...;1Þ�hþ r ¼ ½Yð1;...;1Þ�

yð1Þ

..

.

yðmÞ

8>><
>>:

9>>=
>>;þ r. (16)

Note that Eq. (16) indicates a linear system also under a mechanical point of view, since the measured
vibrations are caused by the superposition of the effects of all the excitation systems applied. The fitting of the
regression model, i.e. the minimization of the error, can be done by means of different approaches and in
previous studies weighted least squares have been used. Here, M-estimators are used and this requires some
modifications to the model-based identification technique.

The implementation of M-estimate requires two nested loops in this case; hence it requires longer
calculation time, but greatly increases the robustness and therefore the accuracy of the obtained results.
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The external loop is relative to the localization of the fault and it is equal to that of the L2 method. The inner
loop is that of the IRLS algorithm (see Ref. [1], Section 4 and Refs. [21,22]):
1.
 The initial estimate of the amplitudes and phases of the excitation systems in the current node is selected
using the results of least squares estimate.
2.
 At each iteration t, the errors e
ðtÞ
i and the associated weights w

ðtÞ
i are calculated from the previous iteration.
3.
 The new weighted least squares estimate at iteration t is

h
Þ ðtÞ

ð1;...;1Þ ¼ ½Yð1;...;1Þ�
T½WðtÞ�½Yð1;...;1Þ�

� 	�1
Yð1;...;1Þ

 �T

WðtÞ

 �

N, (17)

where

WðtÞ ¼ diag w
ðtÞ
i

h i
. (18)

Steps 2 and 3 are iterated until convergence of the values of h

Þ

ð1;...;1Þ is achieved upon a stated criterion.
The inner loop is then ended and the relative residual between the experimental data and the system response
due to the identified faults in the first rotor node is determined, first by obtaining the calculated response due
to the identified faults in the first node:

N

Þ

ð1;...;1Þ ¼ ½Yð1;...;1Þ� h
Þ

ð1;...;1Þ (19)

and

d

Þ

rð1;...;1Þ ¼

N� N

Þ

ð1;...;1Þ

� �T
N� N

Þ

ð1;...;1Þ

� 
N�T N

0
BBB@

1
CCCA

1=2

. (20)

The procedure then continues with the external loop and is iterated for the permutations nr
Pm so that the set

of d

Þ

r in the Rm space is built up. The minimum value of d

Þ

r indicates along the m dimensions the most

probable location of the faults, the estimations of which are given by the corresponding values of h

Þ

ðsÞ. The

research for the minimum value of the relative residual set is the same performed in the case of use of the least
squares estimate, as shown in Refs. [2,9].

3.2. Experimental results

The test-rig employed is that of Department of Mechanical engineering of Politecnico di Milano (PdM). It
has been described in detail in Ref. [17] while the model has been tuned as described in Ref. [2], even if the
tuning is not perfect in some frequency range.

The horizontal rotor, see Fig. 18, is composed by two rigidly coupled steel shafts (the span is about 2m and
the mass 90 kg) supported by four elliptical journal bearings. The variable speed electrical motor can drive the
rotor up to a maximum speed of 6000 rev/min, while the flexible steel foundation, which has several natural
frequencies in the operating speed range of the rotor, has been modelled by modal representation.

Two X–Y proximity probes in each bearing measure the relative shaft displacements and two X–Y
accelerometers on each bearing housing measure its vibrations, therefore the measuring planes coincide with
the bearings (Fig. 19). The absolute vibration of the shaft is calculated by adding the relative displacement
measured by the proximity probes to the absolute bearing housing displacement, which is obtained integrating
twice the acceleration measured by the accelerometers. A run-down test was performed in order to store
reference vibration data.

Two known unbalances are applied on both shafts of the test-rig in the balancing planes corresponding to
the nodes 9 (unbalance on the short shaft) and 35 (unbalance on the long shaft) in the finite beam model. The
amplitude and the phase of both unbalances are the same and equal to 3.6e�4 kgm and �901. Using the
stored reference vibrations, the additional vibrations are obtained in the speed range 504–3001 rev/min. Two
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Fig. 19. Rotor model of the PdM test-rig.

Fig. 18. PdM test-rig.
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unbalances being simultaneously identified, the relative residuals are calculated for the permutations nr
P2 and

their set is in R2. Since the two faults are of the same kind, the residual surface representing the residual set is
symmetric as shown in Fig. 20 (and therefore two minima are present).

Anyway, it is not easy to immediately identify the minimum in the surface, in case of use of both L2 and
Huber’s M-estimate. Therefore a different representation of the surface is used, called residual map. In this
representation, a colour code represents the value of the residual and vertical and horizontal axes
corresponding to the rotor nodes. Using the residual map, the residuals are plotted in Fig. 21 for the
L2-estimate and in Fig. 22 for the M-estimate. The two darkest areas indicate the position of the two faults. It
is possible to see that the M-estimate locates exactly the fault position, whilst the L2-estimate does not. The
complete results are summarized in Table 2. Also in this case, the M-estimate achieves a greater accuracy than
the L2-estimate, with regard not only to the fault positions but also to amplitudes and phases of the
unbalances.

It is also interesting to note that, even if the stop condition of the IRLS algorithm is quite restricting, being
the same of Eq. (4), the convergence of the estimated values of the two faults in correspondence of the
minimum value of the d

Þ

r occurs before the maximum allowed number of iterations (see Fig. 23).
The comparison between the experimental measurements and the simulated results with the identified fault

parameters is shown in Figs. 24–27 for bearings #1 and #3 only, along with the values of the weights in the last
iteration as a function of the rotating speed, i.e. practically to the experimental observation reverse order.
Since in this case the measurements were carefully made, a low weight indicates that the model fitting to the
data is not good at this rotating speed.

This could be caused for instance by the calculation of the linearized dynamic stiffness coefficients that
could not match exactly the journal bearing behaviour in all the considered speed range of the run-down, or by
the presence of phenomena related to the supporting structure that have not been modelled or taken into
account. In Figs. 24–27, it is possible to observe that generally low weights are attributed to the measurements
corresponding to the critical speeds of the rotor. In these cases, the rotor orbits inside the bearings can become
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relatively large with respect to the clearances; some nonlinear effects can occur and the linearization of the
oil-film forces cannot take into account all the phenomena.
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Table 2

Results of two simultaneous unbalance identification in a rotor test-rig

Nodes Dl (m) Amplitude (kgm) Dmr (kgm) Phase Dj (deg.) Rel. residual

Actual 9 3.60 e�4 �901

35 3.60 e�4 �901

L2-estimate 8 �0.07 (�3.59%) 4.22 e�4 0.62e�4 (17.22%) �93.211 �3.21 0.578

36 0.02 (1.03%) 3.82 e�4 0.22e�4 (6.11%) �102.521 �12.52

M-estimate (Huber) 9 0.00 (0.00%) 3.99 e�4 0.39e�4 (10.83%) �91.231 �1.23 0.415

35 0.00 (0.00%) 3.55 e�4 �0.05e�4 (�1.39%) �93.071 �3.07

P. Pennacchi / Journal of Sound and Vibration 319 (2009) 140–162156
The piece of information given by the weight values can be useful to decide in which frequency range a
further model tuning could be performed. Comments are similar for the results in the bearings not shown.

4. Experimental results for a SIMO system: unbalance identification in a 320MW steam turbo-generator

The proposed technique is applied to the identification of the unbalance in a real steam turbo-generator of a
power plant. In this case, besides the accuracy of the identification, it is interesting to show that the capability
of the M-estimator technique to perform the auto-rational-weighting of the data allows a successful
identification without an expert’s knowledge.

The considered machine and the experimental data have already been analysed in detail in a previous paper
[18]. In that paper it has been shown that the model-based identification in the frequency domain for the rotor
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system obtained good results in identifying the unbalance of the machine, but that the best performances were
obtained when weighted least squares were used. The attribution of the weights was made by expert’s selection
on the basis of the consideration that the accuracy of the machine model was higher in certain rotating speed
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ranges or that data from some measuring planes were more important. Actually the worst results were
obtained when all the available additional vibration data (i.e. corresponding to each one of the rotating speed
of run-down considered) were used and without weighting any measuring plane. However, this reflects
actually the approach of a non-expert like a power plant operator of the control room. Now the same ‘‘blind’’
strategy is used along with the M-estimate.

The considered machine is a 320MW fossil fuel steam turbine, the model of which has been already shown
in Fig. 17. The details about the model assembling are reported in Ref. [18] so as the considerations about the
linear behaviour of the machine. The experimental data used to obtain the additional vibrations are related to
a run-down before and after a machine balancing. This way it is possible to know exactly the excitation
position, amplitude and phase. Care was taken in order to choose two run-downs in similar thermal
conditions. The balancing mass was on the first balancing plane of the generator that corresponds to the
coupling face between the low-pressure turbine and the generator towards the last one (between bearing #4
and #5 in Fig. 17). The corresponding node of the model is 132. The overall amplitude of the balancing was
of 0.256 kgm with a phase of �22.51 with respect to the key-phasor. Close to each lubricated journal bearing
(the vertical dotted lines in Fig. 17) the shaft vibrations relative to the bearing housing were measured by a
couple of X–Y proximity probes while the absolute vibrations of the supports were measured by a couple of
X–Y velocimeters. Examples of the additional vibrations, i.e. the difference between balanced and unbalanced
conditions, are shown in Fig. 28 for the measuring station close to bearing #4. Being only one excitation to be
identified, the system is a SIMO.

The identification method is the same as used in Section 3.1, considering that m ¼ 1 and therefore the
relative residual set (for both the L2 and M-estimate) are in the R space. The plot of the relative residual as a
function of the rotor nodes or their axial position allows the minimum to easily indicate the excitation position
along the rotor. Huber’s M-estimator is used for the comparison. The two residual sets are shown in Fig. 29
and have different minima. Using the L2-estimate, the unbalance position is node 134, whereas it is node 132,
i.e. the exact position, for the M-estimate.
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Table 3

Results of unbalance identification in a 320 MW steam turbo-generator

Node Dl (m) Module [kgm] Dmr (kgm) Phase Dj (deg.) Rel. residual

Actual 132 0.256 �22.51

L2-estimate 134 0.40 (1.40%) 0.186 �0.070 (�27.34%) �18.61 3.9 0.715

M-estimate (Huber) 132 0.00 (0.00%) 0.213 �0.043 (�16.80%) �20.71 1.8 0.709
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The complete results are shown in Table 3. Obviously amplitude and phase obtained by the L2-estimate are
coincident with those obtained in Ref. [18]. The use of the M-estimate allows the exact position to be found
out, without expert’s selection of weights and in an automatic way, and also the accuracy in module and phase
estimate is remarkable, especially considering the on-field case of a real rotating machine. In the node in which
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the unbalance is localized, the ILRS algorithm converges in only 18 iterations (the stop condition is that of
Eq. (4)), see Fig. 30. Note that the values at the first iteration do not correspond to those of L2 in Table 3, the
nodes being different.

5. Conclusions

In this second part of the study, the performances of the M-estimate in order to increase the robustness of
excitation identification in mechanical systems are evaluated on some SIMO and MIMO experimental cases.
Two of them are related to test-rigs, whilst the third is a real machine. In all the proposed cases, the M-
estimate allows accurate identification of the excitations, in terms of not only their magnitudes and phases, but
also of their positions when pertinent.

The remarkable accuracy in the identification is obtained in an automatic way, i.e. the IRLS algorithm does
not require any kind of pre-emptive expert’s analysis of the data or attribution of weights. On the contrary this
is often practically necessary if weighted least squares estimate is used, in order to obtain successful results.
The IRLS algorithm is autonomously able to weight the data when the fitting between the experimental data
and the physical model is not good. This implies that both noise on the experimental measure and some
modelling errors are tolerated. In two of the examples presented in the paper, those related to rotor dynamics,
this tolerance to modelling errors is effective to overcome possible lack of accuracy of machine model with
regard to bearings and supporting structure. Moreover, the analysis of the weights given to a certain
experimental value in certain conditions allows the model quality to be evaluated.

As regards the different types of M-estimators that have been proposed, the theoretical analysis and the
numerical cases proposed in the first part of the paper have shown that only few of them are suitable. The
experimental cases presented here confirm that only those having a unique solution are able to give a good
estimation of the unknown parameters. In practice, Huber’s M-estimator, which is the first historically
introduced estimator, gives excellent results in all the cases under an engineering point of view.
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